Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Entanglement plays a vital role in quantum information processing. Owing to its unique material properties, silicon carbide recently emerged as a promising candidate for the scalable implementation of advanced quantum information processing capabilities. To date, however, only entanglement of nuclear spins has been reported in silicon carbide, while an entangled photon source, whether it is based on bulk or chip-scale technologies, has remained elusive. Here, we report the demonstration of an entangled photon source in an integrated silicon carbide platform for the first time. Specifically, strongly correlated photon pairs are efficiently generated at the telecom C-band wavelength through implementing spontaneous four-wave mixing in a compact microring resonator in the 4H-silicon-carbide-on-insulator platform. The maximum coincidence-to-accidental ratio exceeds 600 at a pump power of 0.17 mW, corresponding to a pair generation rate of (9 ± 1) × 103pairs/s. Energy-time entanglement is created and verified for such signal-idler photon pairs, with the two-photon interference fringes exhibiting a visibility larger than 99%. The heralded single-photon properties are also measured, with the heraldedg(2)(0) on the order of 10−3, demonstrating the SiC platform as a prospective fully integrated, complementary metal-oxide-semiconductor compatible single-photon source for quantum applications.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Shadow tomography is a framework for constructing succinct descriptions of quantum states using randomized measurement bases, called “classical shadows,” with powerful methods to bound the estimators used. We recast existing experimental protocols for continuous-variable quantum state tomography in the classical-shadow framework, obtaining rigorous bounds on the number of independent measurements needed for estimating density matrices from these protocols. We analyze the efficiency of homodyne, heterodyne, photon-number-resolving, and photon-parity protocols. To reach a desired precision on the classical shadow of an N-photon density matrix with high probability, we show that homodyne detection requires order O(N4+1/3) measurements in the worst case, whereas photon-number-resolving and photon-parity detection require O(N4) measurements in the worst case (both up to logarithmic corrections). We benchmark these results against numerical simulation as well as experimental data from optical homodyne experiments. We find that numerical and experimental analyses of homodyne tomography match closely with our theoretical predictions. We extend our single-mode results to an efficient construction of multimode shadows based on local measurements.more » « less
-
Techniques to control the spectro-temporal properties of quantum states of light at ultrafast time scales are crucial for numerous applications in quantum information science. In this work, we report an all-optical time lens for quantum signals based on Bragg-scattering four-wave mixing with picosecond resolution. Our system achieves a temporal magnification factor of 158 with single-photon level inputs, which is sufficient to overcome the intrinsic timing jitter of superconducting nanowire single-photon detectors. We demonstrate discrimination of two terahertz-bandwidth, single-photon-level pulses with 2.1 ps resolution (electronic jitter corrected resolution of 1.25 ps). We draw on elegant tools from Fourier optics to further show that the time-lens framework can be extended to perform complex unitary spectro-temporal transformations by imparting optimized temporal and spectral phase profiles to the input waveforms. Using numerical optimization techniques, we show that a four-stage transformation can realize an efficient temporal mode sorter that demultiplexes 10 Hermite–Gaussian (HG) modes. Our time-lens-based framework represents a new toolkit for arbitrary spectro-temporal processing of single photons, with applications in temporal mode quantum processing, high-dimensional quantum key distribution, temporal mode matching for quantum networks, and quantum-enhanced sensing with time-frequency entangled states.more » « less
An official website of the United States government
